
www.manaraa.com

243

 Methodology in Software Development Capstone Projects 

Diane E Strode 
d.strode@whitireia.ac.nz 

Jill Clark 
j.clark@whitireia.ac.nz 

Faculty of Business and Information Technology 
Whitireia Community Polytechnic 

Porirua, NZ 

Abstract 
Capstone projects which provide the opportunity for 
student teams to experience ‘real-world’ software 
development form part of the final semester of study in 
many computing degrees. This paper describes a number 
of development methodologies that are currently used 
both in industry and software development capstone 
projects.  Such projects are carried out under a unique set 
of constraints due to their nature as instances of 
experiential learning in an educational setting.  These 
constraints are discussed and then a number of 
methodologies are described along with a discussion of 
the suitability of the methodology for capstone projects.  
Issues that must be addressed by instructors are 
considered.  Finally recommendations are made and a 
plan for a study into capstone development methodologies 
is described.    The goals of this paper are to provide an 
overview of current methodologies available for software 
development capstone projects, to clarify the benefits and 
problems encountered when using these methodologies in 
capstone projects, and to indicate suitable resources for 
those involved in these projects. 

Keywords:  Capstone projects, systems development 
methodology, software development method, 
development process.

1 Introduction 
In the mid 1990’s Jayaratna reported that there were over 
1000 system development methodologies (1994).  Since 
then many more have been developed, for the object-
oriented paradigm, web development, and agile 
development.  The range is extensive and it is difficult for 
developers who want a well-organised development 
process to decide among the many possibilities.  In 
addition, many of the undergraduate computing degrees 
offered in the tertiary sector require that students 
complete capstone projects during their studies (Clear, 
Goldweber, Young, Leidig, & Scott, 2001) and students 
are typically required to specify and use an appropriate 
development methodology for their capstone project.  But 
which methodologies are really suitable for such small, 
short-term projects?  Is any methodology necessary at all?  

This quality assured paper appeared at the 20th Annual 
Conference of the National Advisory Committee on Computing 
Qualifications (NACCQ 2007), Nelson, New Zealand. Samuel 
Mann and Noel Bridgeman (Eds). Reproduction for academic, 
not-for profit purposes permitted provided this text is included. 
www.naccq.ac.nz

This paper provides an initial framework for selecting an 
appropriate methodology for a software development 
capstone project.  A number of methodologies are 
reviewed and discussed with respect to their suitability 
for small software development teams in the educational 
capstone environment.  

This paper is organised in the following way.  First the 
constraints on capstone projects are considered.  Then a 
number of well known types of methodology are 
reviewed with particular attention paid to how each one 
caters for the constrained environment of capstone 
projects. Then recommendations are made based on this 
comparison.  Following this a design for a study of the 
methodologies currently in use for software development 
capstone projects is presented.  

Terminology in this discussion paper is that defined by 
Clear, Goldweber, Young, Leidig, and Scott (2001) who 
provide a useful discussion regarding many aspects of 
computing capstone projects. We have made no 
distinction between methodology, method, and process, 
with respect to software development (see Crinnion 
(1992), Graham, Henderson-Sellers, & Younessi (1997a), 
and Avison and Fitzgerald (2006b) for discussions on 
interpretation of these terms).  Different fields of 
computing (particularly information systems and 
computer science) and different continents (particularly 
Europe and USA) tend to favour one or the other term.  In 
general they all describe development as a series of 
phases leading from one to another, with distinct 
activities carried out during phases, leading to progressive 
elaboration and production of artefacts culminating in a 
software product which forms part of a system.  

2 Constraints on Capstone Projects 
Software development capstone projects are common in 
all of the fields of computing; informatics1, computer 
science, software engineering, information systems, 
information technology, computer engineering, and 
related fields (Adams, Goold, Lynch, Daniels, Hazzan, & 
Newman, 2003).  They are designed to give the student 
an opportunity to draw on the full range of skills they 
have acquired during their degree, both hard skills such as 
the application of analysis, design, and programming 
skills to a realistic problem, and soft skills such as 
teamwork, conflict resolution, and dealing appropriately 

                                                           
1 The study of the application of information technology 
(e.g. in business, music, medicine). 



www.manaraa.com

244

with project sponsors.  Projects require more commitment 
and usually have more meaning to students than typical 
assessments as they go beyond meeting assessment 
criteria by involving industry sponsors who have some 
real need for the software under development.  So the 
capstone experience gives the student real-world 
experience before they move into the workplace.  
However the capstone project cannot fully replicate 
workplace experience.  There are a number of constraints 
on projects due to the educational environment in which 
the project is carried out.  These restrictions are primarily 
those of time and commitment, experience level, scope 
and complexity, technology, and the need to meet 
assessment criteria. Each of these issues is now discussed.  

Projects are restricted in time; typically the whole project 
must be completed to some acceptable level within one 
semester of about 12 to 16 weeks. Deadlines in capstone 
projects are firm, unlike a project in industry where a few 
extra weeks may be allowable to ensure completion.  In 
addition the commitment of students is seldom 100% as 
many will be managing other courses and assessments 
alongside a larger body of time spent on the project itself.  

Experience levels are low in many areas for the students.  
Knowledge and experience in an unstructured 
environment, solving a problem that involves a variety of 
different programming languages and technologies, may 
be limited or absent.  In addition most students are 
inexperienced in project management, software 
development, working in teams in a development 
environment, and in dealing effectively with sponsors and 
instructors.  Experience levels can also be low for the 
instructors who may not be familiar with all of the 
various technologies that are needed to carry out the 
project. 

Scope constraints are usually defined in the set up phase 
of the project by the project coordinator and instructors in 
consultation with sponsors.  This usually occurs before 
students become involved.  Instructors must select 
projects that are both complex enough to be satisfying for 
a small team (often 2 to 5 students) and the sponsor, and 
not so complex that they are overwhelming and can not 
be completed in whole or part within the available time.  
The difficulties of assessing the scope and complexity of 
capstone projects is acknowledged by Mann and Smith 
(2005).  Scope and assessment are related.  Scope must be 
managed carefully as the project progresses and it is not 
advisable to change scope much during the project.  This 
is because large changes in scope could invalidate the 
project as an assessment tool, particularly if students 
reduce the scope too much. Increases in scope must be 
managed by instructors, in consultation with sponsors and 
students, as this can also impact on assessment as 
individual projects must be fairly similar in size across all 
student groups.  When scope is set other considerations 
come into play such as the technology used.   

The technology used may be restricted in some way due 
to Faculty budgetary constraints or the experience levels 
of instructors and students.  Budgetary restrictions may 
limit the provision of, and technical support for, hardware 
and software.  The programming languages used are 
usually restricted to those that the student cohort and the 

instructor, or some available mentor, has previously 
experienced.   Standard in most software capstones are 
object-oriented concepts and languages, Internet 
development, and use of relational databases.  Other 
technologies appear on the horizon constantly such as 
web services, distributed systems, mobile devices, wiki’s, 
and an infinite number of new technologies and language 
variations. The ability to undertake projects where 
instructors are not familiar with the technology is 
constrained to some extent by the flexibility and 
willingness of individual instructors to provide support 
for technologies which may not be covered in the 
curriculum. 

Assessment imposes particular restrictions on capstone 
projects.  The student project generally must satisfy not 
only the sponsor’s requirements, but also a set of 
assessment criteria, in order for the student team to gain 
credit for the capstone course.  These assessments 
normally impose additional deadlines and tasks on the 
project well beyond that required by the sponsor.  Items 
such as specification documents, presentations, work 
logs, and critical reflection reports, are typical (Chard, 
Lloyd, Strode, & Wempe, 2004; Clear et al., 2001).  
These add overhead beyond that encountered in industry 
practice.   

So, the following constraints typically act on software 
development capstone projects:     

1. Time and commitment 
2. Experience levels 
3. Scope and complexity 
4. Technology 
5. Assessment criteria 

3 Common Methodologies for Capstone 
Projects 

This section of the paper describes and discusses a 
number of common systems and software development 
methodologies used in industry and also reported to be in 
use in software development capstone projects around the 
world (Adams, Goold, Lynch, Daniels, Hazzan, & Newman,
2003).  Their appropriateness for student capstone 
projects and how the methodology functions given the 
constraints identified in capstone projects is then 
discussed. 

3.1 The Traditional Systems Development 
Lifecycle 

The traditional systems development lifecycle 
methodology (SDLC), defined in 1970, was one of the 
first developed to give structure to the process of systems 
development for large systems (Royce, 1987).  It provides 
for a full set of specification documents to be produced at 
different phases and covers the full development 
lifecycle, although exactly what activities should be 
carried out at each phase were not specified in the 
original publication, but were added in elaborations of the 
methodology in methods such as Information Engineering 
(Martin & Finkelstein, 1981) and SSADM (Structured 
Systems Analysis and Design Method), (Eva, 1994).  The 
traditional SDLC provided for throw-away prototyping, 



www.manaraa.com

245

limited iteration, and full testing.  It specified exactly how 
much user interaction should be scheduled into 
development and the exact role of the user.  It has various 
problems in the present development environment.  For 
example when it was first introduced it was common to 
have existing manual systems that could be studied in an 
analysis phase in order to reproduce these systems in 
automated form.  Requirements were assumed to be 
discoverable at the beginning of the lifecycle.  The 
situation in 2007 is that some systems have no precursors, 
either manual or automated, for example certain web 
development problems are unique or as yet unimagined.  
Analysis then becomes a brainstorming activity, or the 
whole analysis phase becomes distributed across the 
lifecycle as requirements arise. Typical SDLC artefacts 
(e.g. Data Flow Models) are unsuited to this type of 
activity.  In addition, typical SDLC methods (e.g. top 
down functional decomposition) were designed for 
programming languages that were procedural and evolved 
before the advent of object-oriented concepts and 
languages.  

The SDLC is reported as effective for use in software 
development capstone projects  (Beasley, 2003; Groth & 
Hottell, 2006), although Catanio (2006)  tailored the 
method to allow for incremental prototypes. However 
problems with the SDLC for capstones are apparent in a 
number of areas (Mann & Smith, 2006).  Avison and 
Fitzgerald (2006a) discuss general problems with the 
method.  Those that are relevant to capstone projects are 
the dropping of final phase tasks when schedule slippage 
occurs (typically system completion, system testing, and 
final documentation).  This type of slippage is even more 
likely in a project where the team is inexperienced.  
Another drawback of the SDLC is the late delivery of the 
product in the lifecycle.  Students can spend inappropriate 
lengths of time producing analysis and design documents 
before beginning development.  Only once development 
is underway can the sponsor begin to see actual progress.  
It is at this stage that late requirements are likely to 
appear as the sponsor, especially if this is a technically 
naïve person, sees the possibilities that the technology 
can provide.  This type of development also does not 
allow for scheduled revision or improvements to the code 
base. 

3.2 Object-oriented Methodologies 
There are many object-oriented methodologies; Graham, 
Henderson-Sellers, and Younessi (1997b) list many of 
them (see table 1).  One of the most well known, 
probably due to the availability of commercial tool 
support by Rational Corporation and later IBM, is the 
Rational Unified Process (RUP), (Kruchten, 2000).  The 
object-oriented methodologies have a close fit with the 
object-oriented programming languages C++ and Java 
that came into common use in the 1990s. These 
methodologies provide both analysis and design 
techniques for object based systems development and 
generally advocate an iterative and incremental 
development process. 

Roggio (2006) reports successful use of the heavyweight 
RUP in software development capstone projects.  He used 

RUP in conjunction with Rational Rose which is a tool 
for development and storage of Unified Modeling 
Language (UML) analysis and design artefacts, and for 
limited code generation. RUP is an iterative and 
incremental development process covering the full 
lifecycle from inception to product release. RUP 
iterations are based around delivery of prioritised 
requirements allocated on a highest-risk-first basis.  RUP 
specifies roles, activities, and phases and is tailorable for 
both large and small projects (Collaris, Dekker, & 
Warmer, 2006).  However this tailoring requires some 
previous experience in the application of RUP, otherwise 
the tailor may not know which parts to trim and which to 
leave.  The main problem with RUP is in the tailoring.  
Instructors would need to tailor the RUP either 
generically for all projects, or for each individual project 
before it is used, as this is not a task that students could 
achieve alone.   

UPEDO is a pre-tailored version of RUP developed for 
use in student projects ("Yoopeedoo", 2004).  But 
independent reports on the successful use of this method 
in capstone projects are not available.  

3.3 Traditional Project Management 
Traditional project management is taught in many 
computing courses.   Projects using traditional project 
management practices are expected to progress though 
four phases of development; concept, development, 
implementation, and close-out (Schwalbe, 2006).  
Schwalbe’s text is based around the PMBOK Guide of 
the Project Management Institute (2004) which 
documents best practice for all types of project.  
Traditional project management is primarily concerned 
with management of the projects scope, schedule, cost, 
quality, risk, and people (as resources, and with 
communication between the people).  However Schwalbe 
differentiates between project and product lifecycles, and 
suggests that for software development projects the 
traditional project management lifecycle is modified to 
accommodate the product lifecycle.  Product lifecycles 
can be any of; the traditional SDLC (or waterfall), spiral, 
incremental, prototyping, Rapid Application 
Development (RAD), or agile methods.   

Examples of software capstones where the traditional 
project management process is followed are few and 
details of the actual development process are not 
discussed (Goold, 2003).   

Traditional project management does not focus on project 
artefacts, such as documents, apart from specific concept  
phase documents such as a business case, objectives 
definition, and detailed schedule plans. It provides no 
guidance on appropriate techniques for software 
development.  Project management principles, although 
useful knowledge in any project, are not directly 
applicable in very small capstone teams where cost is not 
normally an issue.  Its main benefits appear to be in 
emphasis on communication and feedback from teams on 
progress.  Detailed schedule plans based on work 
breakdown structures developed by inexperienced teams 
of capstone project students are unlikely to be realistic or  



www.manaraa.com

246

Table 1: Object-oriented methods published in the 1990s.  An expansion of the list published by Graham, 
Henderson-Sellers and Younessi (1997b). 

Year
published 

Object-oriented method Author 

1988/1991 Shlaer and Mellor Shlaer and Mellor  (1988, 1991) 

1990 OOA/OOD  Object-oriented Analysis/Object-
oriented Design 

Coad and Yourdan (1990) 

1990 RDD (Responsibility Driven Development) Wirfs-Brock, Wilkerson and Wiener (1990) 

1991 Booch’s method Booch (1991) 

1991 SOMA (Semantic Object Modeling Approach) Graham (1991) 

1991 Synthesis Page-Jones (1991) 

1991 OMT (Object Modeling Technique) Rumbaugh, Blaha, Premerlani, Eddy, & Lorenson  
(1991) 

1992 OSA (Object-oriented Systems Analysis): a model 
driven approach 

Embley, Kurtz, & Woodfield  (1992)  

1992 Martin/Odell Martin and Odell (1992) 

1992 Objectory/OOSE (Object Oriented Software 
Engineering): a use-case driven approach 

Jacobson, Christerson, Jonsson, & Overgaard (1992) 

1992 OBA (Object Behaviour Analysis) Rubin and Goldberg (1992) 

1993 Firesmith’s method Firesmith (1993) 

1993 MeNtOr Object-Oriented Pty Ltd ("Documentation for 
MeNtOR", 1993) 

1994 Fusion Coleman, Arnold, & Bodoff (1994) 

1994 Syntropy Cook and Daniels (1994) 

1994 MOSES Henderson-Sellers and Edwards   (1994) 

1994 ROOM (Real-time Object Oriented Modeling) Selic, Gullekson, and Ward (1994) 

1995 BON (Business Object Notation) Walden and Nerson (1995) 

1996 OOram Reenskaug, Wold, and Lehne (1996) 

1997 OPEN (Object-oriented Process, Environment, and 
Notation) 

Graham et al. (1997b) 

1999 UP (Unified Process) Jacobson et al. (1999) 

1999 Catalysis (for frameworks) D'Souza & Wills (1999) 

manageable.  Traditional project management tends to 
assume that scope is set at project initiation and 
deviations are very bad.  This idea (closely aligned with 
that of the traditional SDLC) has been overturned during 
the 1990s with iterative and incremental development 
ideas.  

This brief discussion points to a lack of specific guidance 
within traditional project management for software 
development.  Project management must be used in 
conjunction with some other software development 
methodology to be effective.  Thus courses that cover 
only traditional project management will require 
instructors to teach additional skills to give students the 
ability to progress effectively through a software 
development project. (Palmer & Felsing, 2002) 

3.4 The Team Software Process 
The Team Software Process (TSP), developed in the late 
1990s, is designed for software engineering and focuses 
strongly on metrics for product quality and progress in a 
team development environment (Humphrey, 2000b).  
Team members are first trained in the Personal Software 
Process (Humphrey, 2000a), and the team is assumed to 
be working within a Capability Maturity Model 
environment. In the TSP each team member has a defined 
role and makes detailed plans to enable personal progress 
tracking, project tracking and quality assessment. A team 
relaunch process which occurs every 2-3 months is 
followed and at each relaunch plans are updated to reflect 
the knowledge gained (about the product, progress and 
process) in the previous relaunch.  Detailed templates are 
provided for teams to follow during the process and TSP 
coaching is recommended for new teams. An earned 
value method is used to track progress on the project.  To 
calculate earned value each task is given a value based on 



www.manaraa.com

247

its estimated percentage of the total project time estimate.  
When a task is complete it has earned that value.  Thus 
total earned values for a week give an estimate of the 
projects percentage completion. TSP specifies weekly 
task plans, quality plans which estimate defect injection 
rates, and progress reports.  

TSP is reported as the process of choice by Conn (2004) 
in his Information Systems capstone course, although 
there is no sponsor on the course, so all projects may be 
producing the same product. He notes that TSP can be 
used in any type of project and is not designed for any 
one type of technology or project type (it can be used for 
software development projects and other engineering 
projects).  The way that Conn has tailored the TSP is to 
have two development cycles (iterations) which involve a 
complete pass at creating the product.  Students are 
required to generate a large number of documents during 
the project alongside the product itself.  He also reports 
that students seemed to successfully learn that team 
projects are different from individual efforts.   

TSP is a document heavy process and does not include 
mechanisms for analysis, design, coding or how to 
develop in an iterative manner.  Therefore it may need to 
be enhanced by the instructor with guidance on suitable 
content for each iteration (i.e. what parts of my software 
product should/must be developed first, which second and 
so on for each iteration) or used in conjunction with some 
other development methodology which offers this 
guidance.  TSP in its published form assumes projects are 
of a duration long enough to accommodate a number of 
relaunches.  Each relaunch takes the length of a typical 
capstone project, so relaunches would need to be dropped 
or shortened considerably.  

3.5 Agile Methods 
There are a small number of recognised agile methods 
(Strode, 2006) which generally includes Extreme 
Programming (XP) (Beck, 2000), Scrum (Schwaber & 
Beedle, 2002), Lean Development (Poppendiek & 
Poppendiek, 2003), Adaptive Software Development 
(ASD) (Highsmith, 2000), Crystal methods (Cockburn, 
2002), Feature Driven Development (FDD)  and Dynamic 
Systems Development Method (DSDM) (Stapleton, 
1997). Experience reports on the use of XP in industry 
are common (Marchesi, Succi, Wells, & Williams, 2003).  
DSDM experience reports are less available as this is a 
commercial product controlled by a consortium.  
Experience reports on Scrum are growing but empirical 
evidence for the other methods are not commonly 
reported in research literature.   The use of individual XP 
techniques in classroom settings is now a well established 
research field in computer science and resources are 
available (McDowell, Werner, Bullock, & Fernald, 2006; 
Williams, Smith, & Rappa, 2005).   

There is a tendency in non-academic literature to lump all 
of the agile methods together and discuss ‘agile method’ 
as though it was a single methodology.  This is not the 
case; each agile method stands alone in its own right, 
each method is different from the others and each serves a 
different purpose (Strode, 2006), but all are assumed to 

conform to the principles and practices of the Agile 
Alliance (AgileAlliance, 2001) manifesto.  Some comply 
with these practices and principles more than others.   
Table 2 shows the properties common to XP, DSDM, 
Scrum, ASD, and Crystal methods.  Note that all agile 
methods are iterative and incremental and most assume 
that object oriented concepts and languages are familiar 
to the team (Strode, 2005). 

DSDM and XP are the most likely candidates for a 
capstone project.  DSDM is a framework to provide 
guidance to those using RAD techniques.  Because it is a 
framework this means it can be used with appropriate 
techniques from other methodologies.  So its use in a 
capstone environment would require that the instructor or 
student team select techniques to fulfil DSDM goals (e.g. 
Test first development from XP, sprint backlogs from 
Scrum).  We could locate no reports of its use in capstone 
projects. 

Reports of XP use in capstone projects are available. 
LeJeune’s (2006) empirical study reported mixed results 
for the various techniques of XP.  Umphress, Hendrix and 
Cross (2002) compared a number of methodologies (XP, 
TSP, IEEE107, mil-std-498, ad hoc development) and 
concluded that some of the XP techniques are 
“deceptively difficult” (ibid, p.84) although they thought 
that “XP was a suitable process because it was malleable 
enough to fit the diversity of our development efforts and 
the variety of student skills” (ibid.).   

Table 2: Common properties of agile methods from 
Strode (2006)

Published between 1995 – 2002 in the USA and UK 
Objectivist methods which provide technical 
solutions 
Address business problems 
Practitioner based  
Project manager and developer perspective 
Incremental development 
Iterative development with 1 month iterations 
optimal
Projects undergoing constant change 
Active user involvement 
Feedback and learning 
Teamwork 
Empowered teams 
Communication between all stakeholders is critical 
Small teams of 3-10 programmers is optimal 
Frequent meetings, daily is optimal 
Working software is the main product of 
development 
Modelling techniques are not mandated 
Minimise documentation 

Keefe and Dick (2004) found that it was important to 
teach the XP techniques and introduce the necessary tools 



www.manaraa.com

248

early before the project begins and to continue coaching 
during the project.  Dubinsky and Hazzan (2005) reported 
increased awareness of customer needs and testing issues 
when using XP.  

We believe that there are obvious benefits and drawbacks 
of XP in capstone projects.  There are a number of 
practical and useful techniques in XP that make it suitable 
for capstone projects. XP is designed for small teams, it is 
designed to heighten communication within the team 
using pair programming and collective ownership, 
planning game, and collocated teams.  It has explicitly 
defined techniques for producing quality software using 
coding standards, test-driven development, refactoring 
and continuous integration.  The method has clearly 
defined roles and responsibilities for each team member 
and Beck (2000) states that the method can be adapted to 
local conditions.  However some techniques and practices 
are drawbacks in capstone projects.  Documentation is 
not considered to be an artefact of development and most 
of it is imbedded in the code or in a form not suitable for 
assessment (this could be solved however with an 
electronic whiteboard or a digital camera to submit 
temporary documents for assessment).  Another solution 
to this problem is to treat documentation as a requirement 
of the system as has been done when using XP in ISO 
compliant organisations (Nawrocki, Jasinski, Walter, & 
Wojciechowski, 2002).  Documentation guidelines for 
agile methods are provided by Ambler (2002).  
Customer-on-site is clearly not feasible in most cases; 
capstone sponsors are unlikely to devote so much time to 
a capstone project.  The concept of a 40 hour week is also 
not useful in capstone projects.  There is also a problem 
in architecture design with XP (Keefe & Dick, 2004).  
System metaphor is the recommended technique but it is 
poorly explained by Beck (2000) and alternative 
techniques are needed.  Coaches are recommended to 
train the team and keep the process in place during the 
project.  Instructors would need to be experienced and 
have enough time available to fulfil this role.  
Alternatively a course covering the XP techniques and 
philosophies and offering experiences in its use would be 
required.  Finally in order to successfully use XP, 
faculties need both tools and expertise in test-first 
development and continuous integration.  In general there 
seems to be a consensus about the use of XP in senior 
student groups that the whole method is too large and 
complex to adopt at once (Astrachan, Duvall, & 
Wallingford, 2003; Johnson & Caristi, 2003; Mugridge, 
MacDonald, Roop, & Tempero, 2003).  Some instructors 
disagree with the use of agile methods in the classroom at 
all, usually because of the lack of emphasis on 
documentation and a perception that agile methods are ad 
hoc development in disguise (Bunse, Feldmann, & Dorr, 
2004; Sanders, 2003; Schneider & Johnston, 2003).  
Others have mixed reactions (Melnik & Maurer, 2005; 
Noble, Marshell, Marshall, & Biddle, 2004).  

In conclusion adoption of XP in an education setting 
depends on the goals of the course offered.  If your goal 
is to teach students how to deal with large systems while 
meeting the criteria of a body of software engineering 
knowledge then XP is not a good choice as it cannot 
satisfy many of the criteria (Schneider & Johnston, 2003).  

However if your goal is to teach students how to work 
well in small teams, to improve testing capabilities, and 
deliver functioning software in a short time frame, then 
the studies of XP in the classroom indicate that XP is a 
useful choice.  

3.6 Ad hoc development 
Ad hoc development is the absence of any repeatable 
development process or methodology.  Although ad hoc 
development is not considered appropriate in an 
educational course (Clear et al., 2001), it is common in 
industry settings (Fitzgerald, 2000; Groves, Nickson, 
Reeve, Reeves, & Utting, 2000).  In fact some 
methodologists consider methodology to be unnecessary 
in a team of only two (Beck, 2000) while others argue for 
methodology for individual developers.  Examples 
include the Personal Software Process (Humphrey, 
2000a), a process for individuals based on RUP 
(Kruchten, 2002), and guidelines for best practice as 
described in Pragmatic Programming (Hunt & Thomas, 
2000).  Given that methodology has been specified for 
single developers, and examples are available, as 
educationalists, we should be taxing our students with 
following a methodology even when working alone on a 
project.

4 Recommendations 
This discussion has shown that there is no one 
methodology that is a perfect fit for use in software 
capstone projects.  The key issue is to have some 
methodology in order to provide structure and guidance 
to the development.  Based on our experiences as 
capstone coordinator and instructors of more than 60 
projects we recommend an iterative development method 
rather than a waterfall as iteration provides natural 
checkpoints on product development and elegantly 
accommodates changes in requirements.  Most process 
models recommend this. It is also necessary to provide 
formal lessons on the philosophy and techniques of any 
methodology used, alongside some experience in its use, 
before the project begins.  Another important aspect is to 
create buy-in with the capstone stakeholders.  Instructors 
need to be convinced of the need for methodology with 
training or discussion before the project begins.  Students 
buy-in can be encouraged with appropriate lessons in 
methodology including the reasons why it is important.  
Sponsors must also have buy-in because they may be 
asked for more, or less, input into the development 
process depending on the methodology selected.  Finally 
it is necessary to make methodology use an assessable 
component of the course.  This helps to keep students and 
instructors aware of their chosen methodology, and 
hopefully allows for reflection on the benefits and 
drawbacks of methodology in practice.   

5 Further Study 
In order to increase knowledge in this area we envisage a 
research study to identify methodologies, methods, and 
processes used in software development capstone 
projects.  Information on issues, problems encountered, 
and successful adaptations of methodologies should be 



www.manaraa.com

249

gathered from coordinators, instructors and students.  
This would be a valuable addition to knowledge of best 
practice in supervision and execution of software 
development capstone projects and would contribute to 
successful outcomes for students, instructors, and 
sponsors.  

6 Conclusion 
Methodology and process is an important aspect of 
software development projects.  Table 3 summaries the 
points made in this article.  We have shown that there are 
numerous methodologies and processes to choose from 
and there are methodologies available for individuals as 
well as small teams.  Each methodology has benefits and 

drawbacks when applied in the capstone environment.  
Instructors must pay attention to this area as there are a 
number of factors to consider which will impact on the 
smooth running of capstone projects.  This is an area that 
is important to educational practice and to industry 
because it is the student experience which influences 
industry practice over time. 

7 Acknowledgements 
Thanks to Brenda Lloyd for her assistance in accessing 
appropriate resources. 

Table 3: Summary of key points for each methodology type
Type Common 

examples  
Models Distinguishing characteristics Issues for capstone projects 

Traditional 
SDLC

SDLC
 (Royce, 1987) 
SSADM
(Eva, 1994) 
IE  
(Martin & 
Finkelstein, 1981)  

None 
specified 
DFD 

ERD 

Best suited to large projects 
Numerous documents produced 
Functional decomposition used 
Model intensive (SSADM and IE) 
Limited prototyping 

Assumes well defined manual 
system exists 
Assumes procedural 
programming language 
Severe problems occur on 
schedule slippage 
Product delivered late in 
lifecycle 

Object-
oriented  

RUP  
(Kruchten, 2000) 
OPEN  
(Graham et al., 
1997b) 

UML 

UML early 
variant 

Provides extensive support for 
object-oriented analysis and design 
Maps readily to object-oriented 
programming languages 
Iterative and incremental 
development  

Considered to be heavyweight 
(model intensive)  
Can be tailored down – but 
experience needed 

Traditional 
Project 
Management 

Project 
Management 
Institute (2004) 

None 
specified 

Advocates a staged process 
Must be used with existing 
development methodologies 
Bases development around a 
business case and firm schedule 

Must be matched with a 
development methodology 
Work breakdown structures may 
be unrealistic 
Best suited to large projects 
Not easily reconciled with 
iterative and incremental 
development styles 

Team 
Software 
Process 

TSP  
(Humphrey, 
2000b) 

None 
specified 

Strong metrics for software quality 
and progress tracking 
Highly proscribed 
Numerous planning/recording  
produced 
Templates available 

Considered to be heavyweight   
Numerous documents produced 
No guidance on analysis, design, 
coding or iterative development 

Agile 
Methods 

XP
(Beck, 2000) 

Scrum
(Schwaber & 
Beedle, 2002) 

UML 
knowledge 
assumed 
UML 
knowledge 
assumed 

Many proscribed techniques (XP) 
Early production of code  
Iterative and incremental 
development 
Best suited to small projects 
No formal documents  
Strong emphasis on quality and 
testing 
Sponsor involvement important 
Copes with late changes to 
requirements 

Assumes high sponsor 
involvement 
Assumes knowledge of UML 
and object-oriented 
programming 
Documentation deemphasised 
Some techniques require training 
and practice before use (e.g. pair 
programming/test-first 
development/refactoring) 
Provides good team support 
mechanisms 

8 References 
Adams, L., Goold, A., Lynch, K., Daniels, M., Hazzan, O., and 

Newman, I. (2003):  Challenges in teaching capstone 
courses.  ITiCSE'03. Thessaloniki, Greece: ACM Press. 

AgileAlliance. (2001):  Manifesto for agile software 
development.  Accessed February 17, 2003. 
http://www.agilemanifesto.org



www.manaraa.com

250

Ambler, S. (2002):  Agile modeling: Effective practices for 
Extreme Programming and the Unified Process. New York, 
John Wiley & Sons, Inc.    

Astrachan, O. L., Duvall, R. C., and Wallingford, E. (2003): 
Bringing extreme programming to the classroom. In Extreme 
Programming Perspective.s  237-250. MARCHESI, M., 
SUCCI, G., WELLS, D., and WILLIAMS, L. (eds).  Boston, 
Addison-Wesley. 

Avison, D., and Fitzgerald, G. (2006a): Chapter 3 The life cycle 
approach. In Information systems development 
methodologies, tools and techniques,4th edn. 31-49. London, 
McGraw-Hill Education. 

Avison, D., and Fitzgerald, G. (2006b). Chapter 27 Issues. In 
Information systems development methodologies, tools and 
techniques 4th edn. 567-590. London, McGraw-Hill 
Education. 

Beasley, R. E. (2003). Conducting a successful senior capstone 
course in computing. Journal of Computing Sciences in 
Colleges, 19(1): 122-131. 

Beck, K. (2000): Extreme programming explained: Embrace 
change. Boston, Addison-Wesley. 

Booch, G. (1991): Object oriented design with applications.
Menlo Park, CA, Benjamin/Cummings. 

Bunse, C., Feldmann, R. L., and Dorr, J. (2004): Agile methods 
in software engineering education. In 5th International 
Conference on Extreme Programming and Agile Processes 
in Software Engineering, XP2004 (Vol. 3092 Lecture Notes 
in Computer Science) 284-293. ECKSTEIN, J. and  
BAUMEISTER, H. (eds). Berlin, Springer-Verlag. 

Catanio, J. T. (2006): An interdisciplinary practical approach to 
teaching the software development life-cycle. Proc. 7th 
Conference on Information Technology Education,
Minneapolis, Minnesota, USA, ACM Press. 

Chard, S., Lloyd, B., Strode, D. E. and Wempe, N. (2004): 
Student industry  projects: Streamlining the process for a 
win-win. Proc. Eighth Annual New Zealand Association for 
Co-operative Education NZACE. Christchurch, New 
Zealand. Accessed March 15, 2006. 
http://www.nzace.ac.nz/past_conf_proc.htm

Clear, T., Goldweber, M., Young, F. H., Leidig, P. M. and 
Scott, K. (2001): Resources for instructors of capstone 
courses in computing. ACM SIGSE Bulletin, 33(4): 93-113. 

Coad, P. and Yourdan, E. (1990): Object-oriented analysis.
Englewood Cliffs, N.J, Prentice-Hall. 

Cockburn, A. (2002): Agile software development. Boston, 
Addison-Wesley. 

Coleman, D., Arnold, P. and Bodoff, S. (1994): Object-oriented 
development: The Fusion method. Englewood Cliffs, NJ, 
Prentice-Hall. 

Collaris, R., Dekker, E. and Warmer, J. (2006, 17 March 2006). 
Tailoring RUP made easy: Introducing the responsibility 
matrix and artifact flow. The Rational Edge, Sept 2006.   
Accessed March 15, 2006. 
http://download.boulder.ibm.com/ibmdl/pub/software/dw/rati
onaledge/sep06/TheRationalEdge_September2006.pdf

Conn. (2004): A reusable, academic-strength, metrics-based 
software engineering process for capstone courses and 
projects. Proc. 35th SIGCSE Technical Symposium on 
Computer Science Education. Norfolk, Virginia, ACM Press. 

Cook, S. and Daniels, J. (1994): Designing object systems. UK, 
Prentice-Hall. 

Crinnion, J. (1992). The evolutionary development of business 
systems. IEE Colloquium on Software Prototyping and 
Evolutionary Development. Accessed June 1, 2005. IEEE 
Xplore database. 

D'Souza, D. F. and Wills, A. C. (1999): Objects, components 
and frameworks with UML the Catalysis approach. Reading, 
M.A, Addison Wesley. 

Documentation for MeNtOR. (1993): Sydney, NSW, Object-
oriented Pty Ltd. 

Dubinsky, Y. and Hazzan, O. (2005): The role of a project-
based capstone course. Proc. 27th International Conference 
on Software Engineering. St. Louis, MO, USA, ACM Press. 

Embley, D. W., Kurtz, B. D. and Woodfield, S. N. (1992): 
Object-oriented systems analysis: A model-driven approach. 
Englewood Cliffs, NJ, Yourdan Press/Prentice-Hall. 

Eva, M. (1994): SSADM Version 4: A user's guide. 2nd  edn. 
London, McGraw-Hill Book Company. 

Firesmith, D. G. (1993): Object-oriented requirements analysis 
and logical design: A software engineering apporach. New 
York, Wiley. 

Fitzgerald, B. (2000): Systems development methodologies: 
The problem of tenses. Information Technology and People 
13(3): 174-185. 

Goold, A. (2003): Providing process for projects in capstone 
courses. Proc. 8th Annual Conference on Innovation and 
Technology in Computer Science, Thessaloniki, Greece, 26-
29, ACM Press. 

Graham, I. (1991): Object oriented methods. Harlow, UK, 
Addison-Wesley. 

Graham, I., Henderson-Sellers, B. and Younessi, H. (1997a): 
Chapter 2: Process as the keystone. In The OPEN process 
specification. Harlow, England: Addison-Wesley. 

Graham, I., Henderson-Sellers, B. and Younessi, H. (1997b): 
The OPEN process specification. Harlow, England, Addison-
Wesley. 

Groth, D. P. and Hottell, M. P. (2006): Designing and 
developing an informatics capstone project course. Proc.
19th Conference on Software Engineering Education and 
Training CSEET'06,  61 - 68. Accessed March 3, 2006. IEEE 
Xplore database. 

Groves, L., Nickson, R., Reeve, G., Reeves, S. and Utting, M. 
(2000): A survey of software development practices in the 
New Zealand software industry. Proc.  Australian Software 
Engineering Conference. Accessed June 1, 2005.  IEEE 
Xplore database. 

Henderson-Sellers, B. and Edwards, J. M. (1994): BOOKTWO
of Object-oriented knowledge: The working object. Sydney, 
Prentice-Hall. 

Highsmith, J. A. (2000): Adaptive software development: A 
collaborative approach to managing complex systems. New 
York, NY, Dorset House Publishing. 

Humphrey, W. S. (2000a): Guest editors introduction: the 
Personal Software Process - status and trends. IEEE 
Software, 17(6): 71-75. 

Humphrey, W. S. (2000b): The Team Software Process (TSP), 
CMU/SEI-20000-TR-023.   Accessed March 13, 2006. 
www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr023.pdf
Hunt, A. and Thomas, D. (2000): The pragmatic programmer.

Boston, Addison Wesley. 
Jacobson, I., Booch, G. and Rumbaugh, J. (1999): The unified 

software development process. Reading, Massachusetts, 
Addison-Wesley. 

Jacobson, I., Christerson, M., Jonsson, P. and Overgaard, G. 
(1992). Object-oriented software engineering: A use case 
driven approach. Harlow, UK, Addison-Wesley. 

Jayaratna, N. (1994). Understanding and evaluating 
methodologies NIMSAD: A systematic framework. London, 
McGraw-Hill. 



www.manaraa.com

251

Johnson, D. H. and Caristi, J. (2003). Extreme programming 
and the software design course. In Extreme programming 
perspectives. 273-285. MARCHESI, M., SUCCI, G., 
WELLS, D., and WILLIAMS, L. (eds).  Boston: Addison-
Wesley. 

Keefe, K. and Dick, M. (2004). Using Extreme Programming in 
a capstone project, Proc. 6th Conference on Australasian 
Computing Education - Volume 30. Dunedin, New Zealand, 
Australian Computing Society. 

Kruchten, P. (2000). The Rational Unified Process: An 
introduction  2nd edn. Boston, Addison-Wesley Longman. 

Kruchten, P. (2002, 15 March 2006). The software development 
process for a team of one. The Rational Edge (2).   Accessed 
June 2, 2006. 
http://download.boulder.ibm.com/ibmdl/pub/software/dw/rati
onaledge/feb02/TheRationalEdge200202Issue.pdf

LeJeune, N. F. (2006). Teaching software engineering practices 
with Extreme Programming. Journal of Computing Sciences 
in Colleges, 21(3): 107-117. 

Marchesi, M., Succi, G., Wells, D. and Williams, L. (eds.). 
(2003): Extreme programming perspectives. Boston, 
Addison-Wesley. 

Martin, J. and Finkelstein, C. (1981): Information Engineering. 
Vol 1 and 2. Englewood Cliffs, New Jersey, Prentice Hall. 

Martin, J. and Odell, J. J. (1992). Object-oriented analysis and 
design. Englewood Cliffs, NJ, Prentice-Hall. 

McDowell, C., Werner, L., Bullock, H. E. and Fernald, J. 
(2006). Pair programming improves student retention, 
confidence, and program quality. Communications of the 
ACM, 49(8): 90-95. 

Melnik, G. and Maurer, F. (2005): A cross-program 
investigation of student's perceptions of agile methods. Proc.
27th International Conference on Software Engineering
New York, 481-488, ACM Press. 

Mugridge, R., MacDonald, B., Roop, P. and Tempero, E. 
(2003): Five challenges in teaching XP. In 4th International 
Conference on Extreme Programming and Agile Processes, 
XP 2003 (Vol. 2675 Lecture Notes in Computer Science) 
406-409. MARCHESI, M., SUCCI, G., WELLS, D., and 
WILLIAMS, L. (eds). Berlin, Springer-Verlag. 

Nawrocki, J., Jasinski, M., Walter, B. and Wojciechowski, A. 
(2002): Combining extreme programming with ISO 9000. In 
Proceedings of the First EurAsian Conference on 
Information and Communication Technology, EurAsia-ICT 
2002 (Vol. 2510 Lecture Notes in Computer Science, pp. 
786-794).  SHAFAZAND, M.H. and TJOA, A.M. (eds). 
Berlin, Springer-Verlag. 

Noble, J., Marshell, S., Marshall, S. and Biddle, R. (2004): Less 
Extreme Programming. Proc. Sixth Conference on 
Australasian Computing Education - ACE'04, Darlinghurst, 
Australia, 30: 217-226, Australian Computer Society. 

Page-Jones. (1991): Relationship between the structure and 
object-oriented worlds. TOOLS '91 tutorial notes, Paris, 
March 4-8, 1991.

Palmer, S. R. and Felsing, J. M. (2002): A practical guide to 
Feature-Driven Development. Upper Saddle River, Prentice 
Hall.

PMI. (2004): A guide to the project management body of 
knowledge. In P. M. Institute (ed) 3rd edn.Vol 2006. USA, 
Project Management Institute. 

Poppendiek, M. and Poppendiek, T. (2003): Lean software 
development an agile toolkit. Boston, Addison-Wesley. 

Reenskaug, T., Wold, P. and Lehne, O. A. (1996): Working with 
objects.  The OOram software engineering manual.
Greenwich, CT:,Manning. 

Roggio, R. F. (2006): A model for the software engineering 
capstone sequence using the Rational Unified Process,.Proc. 
The 44th Annual ACM Southeast Regional Conference.
Melbourne, Florida, ACM Press. 

Royce, W. W. (1987): Managing the development of large 
software systems, Proc. The 9th international conference on 
Software Engineering. Los Alamitos, CA, IEEE Computer 
Society Press (Reprinted from Proceedings, IEEE WESCON, 
August 1970 p. 1-9. Originally published by TRW). 

Rubin, K. S. and Goldberg, A. (1992): Object behaviour 
analysis. Communications of the ACM, 35(9): 48-62. 

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and 
Lorenson, W. (1991): Object-oriented modeling and design.
Englewood Cliffs, NJ, Prentice-Hall. 

Sanders, D. (2003): Student perceptions of the suitability of 
extreme and pair programming. In Extreme programming 
perspectives. 261-272. MARCHESI, M., SUCCI, G., 
WELLS, D., and WILLIAMS, L. (eds).Boston, Addison-
Wesley. 

Schneider, J. and Johnston, L. (2003): Extreme programming in 
universities: An educational perspective. Proc. The 25th 
International Conference on Software Engineering,
Washington, DC, USA, 594-599, IEEE Computer Society. 

Schwaber, K. and Beedle, M. (2002): Agile software 
development with Scrum. Upper Saddle River, New Jersey, 
Prentice Hall. 

Schwalbe, K. (2006): Information technology project 
management (4 ed.). Australia, Thomson Course 
Technology. 

Selic, B., Gullekson, G. and Ward, P. T. (1994): Real-time 
object-oriented modelling. New York, Wiley. 

Shlaer, S. and Mellor, S. (1988): Object-oriented systems 
analysis: Modeling the world in data.  Englewood Cliffs,     
N. J, Yourdan Press Computing Series. 

Shlaer, S. and Mellor, S. (1991): Object lifecycles. Modeling the 
world in states. Englewood Cliffs, N. J,  Yourdan 
Press/Prentice Hall. 

Stapleton, J. (1997): DSDM Dynamic Systems Development 
Method. Harlow, England, Addison-Wesley. 

Strode, D. E. (2005): The agile methods: an analytical 
comparison five agile methods and an investigation of their 
target environment. Unpublished Master of Information 
Science thesis. Massey University, Palmerston North, New 
Zealand. 

Strode, D. E. (2006): Agile methods: a comparative analysis. 
Proc. 19th Annual Conference of the National Advisory 
Committee on Computing Qualifications (NACCQ 2006), 
Wellington, New Zealand. Wellington, New Zealand. 

Umphress, D. A. Hendrix, T. D. and Cross, J. H. (2002): 
Software process in the classroom: the capstone project 
experience. IEEE Software, 19(5): 78-81. 

Walden, K. and Nerson, J. M. (1995): Seamless object-oriented 
architecture. Englewood Cliffs, N. J., Prentice-Hall. 

Williams, L., Smith, S. E. and Rappa, M. (2005): Resources for 
Agile Software Development in the Software Engineering 
Course. Proc. 18th Conference on Software Engineering 
Education and Training, CSEEandT 2005.  236-238. 

Wirfs-Brock, R. J., Wilkerson, B. and Wiener, L. (1990): 
Designing object-oriented software. Englewood Cliffs, NJ, 
Prentice-Hall. 

Yoopeedoo. (2004):   Accessed March 15, 2006. 
http://www.yoopeedoo.org/index.asp


